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a b s t r a c t

The presence of endcap holes greatly influences the performance of an ion trap mass spectrometer. Opti-
mizing the shape and size of the holes may significantly improve ion trap performance. The field contours
have been numerically simulated at varying hole sizes and the potentials were numerically fitted. The
presence of holes in the electrodes adds higher order negative components to the field inside the trap.
The absolute values of the field components were found to increase with increasing hole size. The fit-
ted potentials were then used to reexamine the amplitude response functions. The addition of negative
higher order field components produces up to four jump points in the amplitude response function. The
new jump points may produce multiple jump phenomena in forward scans as well as a jump condition
in the reverse scan mode that has not previously been considered. The shape of the amplitude response
Resonance ejection

Endcap hole effects
Higher order field effects

function is dependent on the hole size and the amplitude of the dipole excitation waveform at constant
buffer gas pressure. The shape of the function has interesting implications for the resonance ejection
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. Introduction

It has been 12 years since Makarov [1] explained the phenom-
nal resolution observed in the resonant ejection mode at low
canning rates for ion traps [2–4]. He was the first to use asymptotic
heory to describe the jump in the amplitude of oscillation when the
ons neared resonance due to the addition of octopole components
o the field induced by stretching the trap (i.e., increasing the dis-
ance between endcaps). While the addition of positive octopole
omponents to the field by stretching the geometry qualitatively
xplained the reason for the jump in oscillatory amplitude near
esonance, it did not fully describe the effects of the higher order
elds experienced by the ions inside the trap due to the endcap
lectrode holes.

The effects of the holes on the fields were studied by sev-
ral groups and were found to be significant [5,6]. More recently,
ing et al. [7] found that the use of a precision mesh over
he exit endcap hole and a field adjusting electrode just out-
ide the entrance endcap hole permitted excellent resolution in
n un-stretched trap. Their modifications essentially nullified the
igher order field components caused by the presence of the
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holes. This enabled a trap with an idealized electrode spacing to
achieve much higher resolution than had previously been observed
[8].

To date, none of the analytical approaches [1,3,9–15] account
for the presence of the higher order terms caused by the pres-
ence of the holes in the endcap electrodes though they are often
mentioned. Fields from outside penetrate into the trap through the
endcap holes adding negative higher order components to the field.
Unfortunately, adding more terms to the expansion that describes
the fields inside an ion trap makes the solutions to the equations of
ion motion more cumbersome, so they were generally ignored for
the sake of expedience.

In this work, the higher order field components caused by
stretching the trap geometry and adding endcap electrode holes
have been incorporated into the amplitude response plot. The sim-
ulated potential along the z-axis of a 10.7% stretched ion trap was
then fit to a polynomial expansion that accounted for the higher
order fields induced by the endcap holes with three different diam-
eters. The odd order terms induced by the disparate potentials
outside the endcap electrodes were found to have little influence
on the fields inside the trap and so they were set to zero. Even
order terms up to dodecapole were used to fit the potential inside

the trap. These terms were then incorporated into a model to
determine the amplitude response function that has been so aptly
used to describe the jump of ions when they near resonance. This
work provides new insight to the ion dynamics inside nonlinear
traps.

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:ReillyPT@ornl.gov
dx.doi.org/10.1016/j.ijms.2008.12.018
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In cylindrical coordinates, the potential inside a nonlinear ion
rap with azimuthal symmetry can be written as

(�, �, t) = V0 cos(˝t)
∞∑

n=0

�n

rn
0

AnPn(cos �) + U0(�, �) (1)

here An is dimensionless expansion coefficient, Pn is a Legendre
olynomial of order n, V0 is the RF voltage at frequency ˝/(2�)
pplied to the ring electrode, r0 is the radius of the trap, and the last
erm corresponds to the DC component. The last term was dropped
or reasons described below. Converting to Cartesian coordinates,
he motion of an ion within a pseudo-potential well is given by

d2r

dt2
+ e∇Ueff (r, z) = −e∇Uexc(r, z) (2)

here Ueff and Uexc are the time averaged pseudo-potential and
xcitation potential, respectively. Ueff is given by

eff (r, z) = e

2m

〈∣∣∣∣
∫

t

∇� dt

∣∣∣∣
2
〉

(3)

The above expression may be simplified by setting the radial dis-
ersion to zero. Because we are interested in the dynamics near the
ndcap holes, higher order terms are included to represent the field
omponents due to the endcap holes. The time averaged pseudo-
otential along the z-axis has the following form:

eff (z) = e

m˝2

(
A2

r2
0

V0

)2 [
z2 + 4f

r2
0

z4 + 3g

r4
0

z6 + O(ε7)

]
(4)

here O represents the rest of the higher order terms. Parame-
ers, f and g are ratios of octopole to quadrupole and dodecapole to
uadrupole field strength defined as A4/A2 and A6/A2, respectively.
sing the Mathieu parameter,

z = 4eA2V0

mr2
0 ˝2

(5)

he corresponding equation of motion of an anharmonic oscillator
s given by

d2z

dt2
+ ω2

0z + ˇz3 + �z5 + O(z6) = f̂

m
cos 	t (6)

here

2
0 = eqzA2V

2mr2
0

(7)

= 8A4ω2
0

A2r2
0

and (8)

= 9A6ω2
0

A2r4
0

(9)

here ω0 is the secular frequency and 	 is the frequency applied
o the endcap electrode with force, f̂ .

The odd nonlinear terms have been eliminated to simplify the
quation. For a stretched trap, ˇ is generally set positive and one or
ore of the higher order terms set negative to account for the field

enetration of the outside through the ion trap. The solution of this
quation can be found using the Lindstedt–Poincare technique [26].

his requires successively approximating the solution such that

(jth) =
j∑

i=1

xi (10)
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ω(jth) =
j∑

i=1

ωi−1 (11)

where the trial function x1 is given by

x1 = z cos ωt (12)

Extending the equation of motion only up to the 5th nonlinear
term, we obtain

x2 = x4 = 0 (13)

x3 =
(

ˇz3

32ω2
0

)
cos 3ωt (14)

x5 =
(

−3ˇ2z5

64ω2
0

− 5z5�

16

)
cos 3ωt +

(
− 3ˇ2z5

128ω2
0

− z5�

16

)
cos 5ωt

(15)

ω1 = ω3 = 0 (16)

ω2 = 3ˇz2

8ω0
(17)

ω4 =
(

5�

16ω0
− 15ˇ2

256ω3
0

)
z4 (18)

The expression for the frequency shift due to the octopole com-
ponent, ω2, is in agreement with work by others [16]. The frequency
shift including dodecapole fields is then given by


ω = 3ˇz2

8ω0
+
(

5�

16ω0
− 15ˇ2

256ω3
0

)
z4 (19)

The damping term as defined in Michaud et al. [17] may now be
added to the equation of motion:

d2z

dt2
+ 2�

dz

dt
+ ω2

0z + ˇz3 + �z5 + O(z6) = f̂

m
cos 	t (20)

where the damping constant, �, is defined using a drag coefficient
model. The damping constant is related to the collision cross section
and gas number density by

� = 3.01
√

2kT/mn�nmn

4mi
(21)

where mi, mn, k, �, and n represent ion mass, neutral mass, Boltz-
mann’s constant, collision cross section, and number density of the
buffer gas, respectively [17].

The solution of the equation of motion up to inclusion of
octopole field components is outlined in standard mechanics text-
books [16,18,19]. Defining the detune parameter as ε = 	 − ω0,
the amplitude dependent frequency of the ions can be writ-
ten as 	 = ω0 + 
Z2 + ε. Recognizing that the frequency correction
expressions contain only even powers of amplitude, the amplitude
dependent frequency can be rewritten as

	 = ω0 +
∑

i


2iz
2i + ε (22)

The following expressions for the coefficients were obtained
algebraically:

A4

(
1
)


2 = 3
A2 r2

0

ω0 (23)


4 =
(

45
16

A6

A2
− 15A2

4

4A2
2

)(
1

r2
0

)2

ω0 (24)
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ig. 1. (a) Geometry and an example of the potential contour plot generated by simu
Inset) expanded view of the contour plot at the exit endcap electrode hole. (b) Sim

The amplitude dependence on the frequency for the addition of
eak octopole field components is given by

2[(ε − 
2z2)
2 + �2] = f̂ 2

4m2ω2
0

(25)

Similarly, the amplitude of motion dependence on the frequency
ith the addition of higher order field components is given by

2

⎡
⎣(ε −

∑
i


iz
i

)2

+ �2

⎤
⎦ = f̂ 2

4m2ω2
0

(26)

. Electric potential

In order to determine the higher order field components inside
he nonlinear ion trap, the SIMION version 7 software package

as used to numerically model the fields because it allows the
eld penetration near the endcap hole as well as the truncation
ffect of having finite electrodes to be determined without the need
f deriving complicated analytical expressions. Since the software
alculates the fields by the finite difference method, the magni-
(SIMION, version 7.0) used to generate the polynomial fit potential along the z-axis.
n of the isolated DC potential that arises from the external electrode.

tudes of the small higher order terms inside the nonlinear trap are
somewhat dependent on the grid densities. In general, larger grid
densities yield better approximations of the small higher order field
terms. Unfortunately, larger grid densities require greater compu-
tational resources, so there is a tradeoff between computational
accuracy and speed. In this study, the goal was to simply demon-
strate the effect of negative higher than octopole field components
and approximate the effect on the potential due to endcap field
penetration. In all cases, the convergence threshold (defined by the
SIMION program) was set at 5 �m V per 1000 V for all numerical
calculation of the fields.

Multipole field components in a 3D commercial ion trap were
reported by Wang and Franzen [20]. More recently, Plass et al. [6]
reported higher order field components arise from endcap holes.
Similarly, multipole field components were reported for a cylin-
drical ion trap by several groups [21–23]. In all cases, the fit was
performed over the region of space inside the trap using spheri-

cal harmonics. Because we are simply interested in the qualitative
effect of the negative higher order components that arise from
the size of endcap holes, we have simply reported the localized
fit along the z-axis for illustration. The potential along the z-axis
was obtained by fitting the numerically derived potential with even
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Table 1
The fitting parameters for 4th and 6th order polynomial fits of the potential along
the z-axis as a function of displacement from the trap center for different endcap
holes sizes.

3.6 mm endcap
hole

1.8 mm endcap
hole

0.9 mm endcap
hole

No endcap hole
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Fig. 2. (a) An example of the fitted potential along the z-axis of the ion trap with
1.8 mm diameter endcap holes as a function of displacement from the center. The
thick black line represents the points determined by the simulation. The red line indi-
cates the fit of the simulated data with a polynomial that contains up to dodecapole
field components. (b) Presents a comparison of the 3D potential generated by plug-
ging our coefficients into a spherical harmonic expansion (green) and the SIMION
simulated potential (yellow) for a stretched trap with 1.8 mm endcap holes. The
potentials are compared over a 15 mm × 15 mm grid. The multipole expansion coef-
ficients are given in Table 1. Absolute difference between the two potential surfaces
(only) 0.22 0.10 −0.029 0.014
0.22 0.27 0.17 0.37

−0.58 −0.48 −0.25 −0.022

rder polynomials of order 4 and 6 by the least squares method.
itting the potential only along the z-axis is justified because res-
nantly excited ions stay near the z-axis during the entire ejection
vent. The potential was fit to 200 �m away from the electrode sur-
ace to minimize the unwanted effects due to finite grid sizes. We
lso excluded the region where the distance to the plane of the
ndcap hole was less than 200 �m because pressure differences
cross the endcap can provide a subtle time averaged “push” when
he ions are in this region. This effect is small, but its magnitude
ncreases with mass or cross section. Convergence was observed
sing over 1 million grid units in the 2D space. Symmetry oper-
tions (reflection and rotation) create a 3D grid of well over 6
illion points. Doubling the number of 2D grid points changed
he octopole field component by a factor of 1.008 with no change
bserved for the dodecapole component. Note that these mod-
ls have grid spacings of 50 and 25 �m with ±25 and ±12.5 �m
ncertainty, respectively. The ion trap geometry was defined by
otationally hyperbolic equipotential electrode surfaces character-
zed by (r0/z0)2 = 2. The ideal quadrupole spacing between the
lectrodes was then increased so that the spacing between the end-
ap electrodes was “stretched” by 10.6% [24]. This made the trap
oundary 7.8 mm from the center. The trap electrodes were trun-
ated at 3r0 as in study by Wang and Franzen [20] to minimize
eld penetration from outside through gaps between electrodes.
he trap geometry also included an injection lens and detector elec-
rode. The potential of the injection lens was set to be −15 V and
etector surface to be −1 kV relative to average ion trap potential.
he entire ion trap was offset with a −10 V potential. The potential
nside and outside of the trap is plotted in Fig. 1a with both the
ens and detector electrodes energized. The trap is enclosed in a
rounded cylinder at the edge of the image in Fig. 1 (not shown). In
his study, three different endcap hole sizes were examined and
ompared to the fields without endcap holes. It is worth point-
ng out the effect of the small DC component from the external
lectrodes. The external DC components were isolated from RF and
imulated in Fig. 1b. The DC potential due to external electrodes
oes not significantly affect the potential inside the ion trap. This
ay be due to the thickness of the endcap electrode near the holes

imiting the field penetration from external electrodes. Note also
hat the external DC components are localized away from the cen-
er of the trap. In order to include the minimal effect of the external
C field, a higher order multipole expansion for just the DC part in
q. (1) is required. An analytical model including a second multipole
xpansion for the DC part would require a large number of terms
nd is beyond the scope of this work. Fortunately, the external DC
ffect is fairly small as shown in Fig. 1b. Its exclusion will not affect
ny of the results discussed here.

All of the calculated potentials were locally fitted only along the
-axis. An example of the fit of the potential along the z-axis for
.8 mm diameter holes is shown in Fig. 2a. The results of the fits
re summarized in Table 1. The geometry used in this study was

ot strictly symmetric because of the outside electrode geometry
ear the endcap holes. However, our least squares fit with 4th or
th order polynomials did not show a significant contribution from
he odd terms. This observation justifies the use of the simplified
quation of motion given above that does not include odd terms.
is projected on to the light blue mesh at the bottom of the figure. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of the article.)

The octopole and dodecapole field strengths given by f = A4/A2
and g = A6/A2, respectively, for four different endcap configurations
are summarized in Table 1. Included in Table 1 are the correspond-
ing fits for the three different hole diameters (0.9, 1.8 and 3.6 mm),
without endcap holes. Fitting the potential without endcap holes
yields very small octopole and dodecapole components in both 4th
and 6th order polynomials. The 0.04 octopole component found in
6th order polynomial fit is slightly larger than the value reported
by Wang and Franzen [20] where the region of space within trap
was fitted by spherical harmonics. Although fitting the 3D volume
may provide a better determination of the quadrupole parameter
A2, our calculated value of A2 (87%) is accurate to within 5%. For this
reason, this error will not impact the qualitative results and conclu-
sions reached here. In all cases with the endcap holes, the 6th order
polynomial fit shows a significant increase in both the octopole and

dodecapole field components and represents a much better fit of the
potential near the holes. Interestingly, the 4th order polynomial fit
obtained from the potential with 0.9 mm endcap holes shows a neg-
ative octopole component. This was due to the error introduced by
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ocal fitting along the z-axis. In the case of a large trap bias and the
uter electrode de-energized, both the octopole and dodecapole
eld components were nearly unchanged.

To examine the effect of our localized fitting of the potential
long the z-axis, we have inserted our 6th order fitting coefficients
nto a spherical harmonic expansion of the 3D potential inside the
rap. Fig. 2b shows a comparison of the spherical harmonic expan-
ion of the 3D potential and the SIMION simulated potential of a
0% stretched trap with 1.8 mm endcap holes defined in a 15 mm
y 15 mm grid. The comparison between the numerically simulated
otential (yellow, Fig. 2b) and our spherical harmonic fit (green,
ig. 2b) up to dodecapole shows an excellent agreement near the z-
xis. The deviation between the calculated potential surfaces occurs
way from the z-axis near the electrode surfaces. This occurs due to
he truncation of the multipole expansion. However, near the cen-
er of the trap where the ions remain trapped, the fit is quite good.
he regions where the potentials deviate do not make significant
ontributions to the trajectory of resonantly excited ions. Our 6th
rder polynomial reliably reproduces the numerically optimized
otentials up to very close to the endcap holes. From Table 1,the
agnitude of the dodecapole field component along the z-axis

teadily increased as the size of the endcap holes was increased
ver the range studied, whereas the octopole component decreased
t a hole diameter of 3.6 mm. The increase of the magnitude of the
odecapole component as the endcap hole size is increased was
xpected.

. Results and discussion

The coefficients of the multipole expansion permit calculation
f the amplitude response function with higher order field com-
onents as a function of endcap hole size. Using Eq. (25) with
ultipole coefficients up to octopolar field components, the ampli-

ude response curves with octopole field superposition of 0.014,
0.029, 0.10, and 0.22 are shown in Fig. 3. These values were
btained from local fitting along the z-axis with endcap hole diam-
ters of 0 mm (closed), 0.9 mm, 1.8 mm and 3.6 mm, respectively.
n all cases in this study, the ion mass-to-charge ratio, buffer gas

ass, pressure, secular frequency (ω0), and excitation voltage are

et to 78 amu, 4 amu, 1 mTorr, 100 kHz, and 500 mV unless noted
therwise. All the amplitude response curves show the typical fold
ver effects. The solid line represents the amplitude response func-
ion without holes in the endcap electrodes. This map qualitatively
eproduces the results detailed by Makarov [1] and Rajanbabu et

ig. 3. Amplitude response function generated using up to octopole field compo-
ents with different sized endcap electrode holes—(solid line) no endcap holes,
dotted line) 0.9 mm holes, (short dash) 1.8 mm holes and (long dash) 3.6 mm diam-
ter holes. The trap boundary is located at 7800 �m. The unstable portions of curves
ith 1.8 mm endcap holes are illustrated as a group of open circles. The inset is a
hase portrait at 20 kHz where the corresponding critical points (indicated by the
rrow) are highlighted with corresponding color dots on the amplitude response
urve. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of the article.)
ass Spectrometry 281 (2009) 108–114

al. [11] by showing the same type of fold over. The fold over effect
increases in magnitude as the octopole field component increases.
Alternatively, negative octopole field components reverse the direc-
tion of the fold over (see the dotted line map in Fig. 3).

Utilization of the “jump condition” for nonlinear ion traps with
a positive octopole component has been explained in detail by
Makarov [1] and Rajanbabu et al. [11]. Briefly, the forward scan
(scanning toward higher mass) can be characterized by moving a
point along the curve from the right-hand side of the resonant point
at ε = 0 in Fig. 3. The fold over effect increases as the magnitude
of the forcing term (excitation voltage) is increased [16]. During
the resonant scan, as the ions of a particular mass near resonance,
they approach the “jump” point on the amplitude response curve.
This is the point where the magnitude of the slope of the ampli-
tude response curve becomes arbitrarily large. At the jump point,
the motion of ions with the same m/z becomes coherent and the
amplitude “jumps” to the upper surface of the amplitude response
function provided the scan speed is slow enough [11]. Therefore,
the ions of the same m/z proceed outward as if no-damping gas
were present while the ions having a different m/z stay trapped rel-
atively close to the center of the trap [1]. This differentiation can be
used to obtain high resolution mass spectra. Without including the
presence of holes in the endcap electrodes, only the forward scan
can utilize the jump condition. This was used to explain the differ-
ence in resolution between forward and reverse scans [1,11]. Note
that the upper portion of the lower curve above the jump point was
proven to be unstable in this model [25]. Using the same explana-
tion, one may describe the jump condition for the reverse scan for
a trap with negative octopole contributions to the field.

However, inclusion of negative higher order terms up to dode-
capole using Eq. (26) yields amplitude response curves that are
quite different (see Fig. 4). A 1.5 V excitation amplitude was used
in the calculation. The amplitude response functions with positive
octopole and negative dodecapole field components show three
jump points for each map. Note that the expected coalescing of the
two separate curves at large amplitude requires the use of a higher
order approximation that was not used in this study. Assuming a
higher order correction does not change the general shape of the
curve, the fourth jump point in Fig. 4 should occur where the two
curves are close. For a forward scan, the ions approach the jump
point from the right and jump to the same curve. Interestingly,
a jump condition also exists in the reverse scan direction when
the higher order terms are included. For a reverse scan, the ions
approach the jump point from the left. When they meet the jump
point, they jump to the other curve in the map to then be ejected

from the trap. The reverse scan jump point is located outside (at
greater values of oscillation amplitude) of the jump point used in
the forward scan. If the experimental parameters are not optimized,
the ions may not be ejected as they hop onto the other curve. In this

Fig. 4. Amplitude response function generated using up to dodecapole field com-
ponents with different sized endcap electrode holes—(solid line) no endcap holes,
(dotted line) 0.9 mm holes, (short dash) 1.8 mm holes and (long dash) 3.6 mm diam-
eter holes. Dipole excitation voltage = 1.5 V. The trap boundary is located at 7800 �m.
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Fig. 5. Amplitude response function generated using up to dodecapole field com-
ponents with different sized endcap electrode holes—(solid line) no endcap holes,
(dotted line) 0.9 mm holes, (short dash) 1.8 mm holes and (long dash) 3.6 mm diame-
ter holes. Dipole excitation voltage = 0.5 V The unstable portion of curves with 1.8 mm
endcap holes are illustrated as a group of open circles. The inset is a phase por-
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rait at 8 kHz where the corresponding critical points (indicated by the arrow) are
ighlighted with corresponding color dots on amplitude response curve. The trap
oundary is located at 7800 �m. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of the article.)

ase, the ions would shrink toward the center of the trap as they
roceed to the right-hand side of resonance point.

Inspection of the amplitude response functions in Fig. 4 suggests
ome interesting possibilities for future experiments. The ampli-
ude response function has a continuous parametric dependence on
he size of the endcap holes. The shape of the amplitude response
unctions also depends on the forcing and damping terms. In Fig. 5,
he voltage of the dipole excitation applied to the endcap electrodes
the forcing term) was changed to 500 mV. In this case, the curves
verlap over a short range of values of the detuning parameter, ε.
nder the conditions in Fig. 5, where the curves overlap, the ions
ill not be ejected from the trap because the upper curve surface is
ot outside the trap boundary at z = 7800 �m. Crossing to the other
urve will occur and the ions will then de-excite and return to the
enter of the trap. It may be feasible to construct a trap and find a
et of conditions where the jump points from either scan direction
verlap at the same detuning parameter with ejection from the trap.
hen the two jump points coincide, the mass of ions measured in

oth scan directions will coincide if the scan speed is slow enough.
he effect that overlapping the jump points has on resolution could
lso be experimentally interesting.

Using the multiple scale analysis described in Appendix A, the
tability of the stationary states was characterized in this study.
lso illustrated as an inset in Figs. 3 and 5 are phase portraits at
elected values of ε of 20 and 8 kHz (indicated by the arrows in the
gures), respectively. The phase portraits were generated using a set
f closed trajectories by numerical integration of the autonomous
quations under no-damping conditions. The portrait in Fig. 3 pro-
uced three critical points. Two of the critical points, shown as blue
nd green dots, are spiral sinks. Under damping conditions, trajec-
ories near those points will travel spiral paths and eventually settle
t those points thereby indicating their stability. The red dot in the
hase portrait of Fig. 3 represents a saddle point, where trajectories
re unstable and will move away from that point. The corresponding
ritical points associated with the selected value of ε = 20 kHz are
hown as colored dots on the amplitude response curves. A group
f saddle points, indicated as open circles in Fig. 3, illustrate that
he underside of the curve from the jump point on is unstable. The
hase portrait in Fig. 5 produced five critical points. Three of the

oints illustrated as green, purple and blue dots are spiral sinks.
wo of the critical points are saddle points. The group of open cir-
les indicates the region of the amplitude response curves that are
nstable saddle points. These results show that the unstable por-
ions of the curve are again on the undersides of the curves after
ass Spectrometry 281 (2009) 108–114 113

(or between) the jump points. The lowest portion of both curves
is asymptotically stable in the presence of damping gas. Therefore,
ions start out very close to the trap center before they experience
resonance excitation. The lower portions of the curves are stable
until a jump point is reached. Therefore, no jump is allowed before
the jump point in both forward and reverse scans. When the ampli-
tude response curve exhibits four distinct jump points (assuming
that the curves coalesce), up to five distinct steady state solutions
are possible at a particular frequency.

To obtain a more accurate description of ion motion in nonlinear
ion traps, even higher order potential components of the field may
be required to allow a better description of ion motion. Unfortu-
nately, the model will become more complex and difficult to solve
numerically. However, inclusion of the dodecapole term used in this
model provided a good initial step for modeling the effect of field
penetration through the endcap holes.

5. Conclusions

The effect of negative higher order field components induced by
the presence of holes in the endcap electrodes on the resonance
ejection of ions from a trap has been explored. These results sug-
gest that jump conditions exist in both the forward and reverse scan
modes when the effects of the endcap holes are considered. The
presence of the holes has interesting implications for the ejection
processes that are observed in ion traps during resonance ejec-
tion. They produce a jump condition in the reverse scan direction.
The shape of the response function was shown to be dependent on
the trap geometry (including holes) and the operating conditions.
Optimization of the response function shape presents interesting
possibilities that warrant further investigation in terms of mass
resolution.
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Appendix A

A.1. Stability of the stationary solutions of double jump amplitude
plot

Although it was convenient to construct amplitude response
curves from the implicit relation, this approach does not give insight
into the stability of stationary states. It is important to distinguish
the stability of the states because the trajectory depends greatly on
the types of critical points present. The simplest approach to find
the nature of critical points is to use methods of multiple scales
[26]. Rajanbabu et al. [11] used this method for weak octopole sys-
tems. Using the same approach to account for the field penetration
through the endcap hole, the nonlinear potential was expanded to
the dodecapole term where its component is negative.

After multiple variable transformations described in Rajanbabu
et al. [11], our equation of motion becomes

d2z̃

d�2
+ �2z̃ = ε

(
ız̃ − 2�

dz̃

d�
− ˜̌ z̃3 − �̃z̃5 + F cos ��

)

where

� = ω0t, � = 	

ω0
, z̃ = z

r0
, �2 = 1 + εı, F = f̂

mω2
0r0

, ˜̌ = 8f,

and �̃ = 9g
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To separate the slow and fast motions, two ranges of time scale
ere used:

0 = �, T1 = ε�

The solution of the equation of motion was expanded to

˜(T0, T1) = Z0(T0, T1) + εZ1(T0, T1)

here Z0 has the general solution of the form

0 = A(T1)cos (��) + B(T1)sin (��)

Derivatives with respect to � are given by the chain rule

d

d�
= ∂

∂T0
+ ε

∂

∂T1
,

d2

d�2
= ∂2

∂T2
0

+ 2ε
∂2

∂T0∂T1

After substituting the last two equations into the equation of
otion, gathering the vanishing secular term and then setting ε = 1,
e obtained the autonomous equations:

dA

d�
= 1

8�

(
−8��A − 4ıB + 3 ˜̌ A2B + 3 ˜̌ B3

+ 5
2

�̃A4B + 5�̃A2B3 + 5
2

�̃B5
)

dB

d�
= 1

8�

(
−8��B + 4ıA − 3 ˜̌ AB2 − 3 ˜̌ A3

− 5
2

�̃AB4 − 5�̃A3B2 − 5
2

�̃A5 + 4F
)

In order to investigate the nature of critical points, these equa-
ions were linearized to

′
(

A
B

)
= J�

(
A
B

)

here J is the Jacobian matrix,

= 1
8�

[
J11 J12
J21 J22

]
[

[

[
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J11 = −8�� + 6 ˜̌ AB + 10�̃A3B + 5�̃AB3

J12 = −4ı + 3 ˜̌ A2 + 9 ˜̌ B2 + 5
2

�̃A4 + 15�̃A2B2 + 25
2

�̃B4

J21 = 4ı − 9 ˜̌ A2 − 3 ˜̌ B2 − 5
2

�̃B4 − 15�̃A2B2 + 25
2

�̃A4

J11 = −8�� − 6 ˜̌ AB − 5�̃A3B − 10�̃AB3

Using this linearized equation, the critical points on the ampli-
tude response curves were investigated in terms of their stability.
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